
Service Virtualization,
Performance Testing,
and DevOps at Comcast
By Frank Jennings, Director TQM Performance Testing at Comcast

C A S E S T U D Y

Case Study
Service Virtualization, Performance Testing, and DevOps at Comcast

2

OVERVIEW
Before service virtualization, Comcast's Performance Testing team often
ran into scheduling conflicts around sharing the test infrastructure.
Sometimes downstream systems were not available. Other times, test
engineers would try to run tests at the same time, which could affect the
test results. This led to variability between tests, which made it challenging
to isolate particular problems. Learn about the results Comcast achieved
after successfully implementing service virtualization—and why service
virtualization is a key component of our DevOps initiative.

INTERFACES
INVOLVED

in tests that are
now virtualized.

REDUCTION
IN STAGING
environment
downtime.

98%
ANNUAL

REDUCTION
of time spent creating

& maintaining test data.

65% 60%

Case Study
Service Virtualization, Performance Testing, and DevOps at Comcast

3

THE CHALLENGES
My team at Comcast executes performance testing across a number of
verticals in the company—from business services, to our enterprise services
platform, to customer-facing UIs, to the backend systems that perform
the provisioning and activation of the devices for the subscribers on the
Comcast network. While our testing targets (AUTs) typically have staged
environments that accurately represent the performance of the production
systems, the staging systems for the AUT’s dependencies do not.

Complicating the matter further was the fact that these environments were
difficult to access. When we did gain access, we would sometimes bring
down the lower environments (the QA or integration test environments)
because they weren't adequately scaled and just could not handle the load.
Even when the systems could withstand the load, we received very poor
response times from these systems. This meant that our performance test
results were not truly predictive of real-world performance.

Another issue is that we had
to work around frequent and
lengthy downtimes in the staging
environments. The staging
environment was not available
during the frequent upgrades or
software updates. As a result, we
couldn't run our full performance
tests. Performance testing teams
had to switch off key projects
at critical time periods in order
to keep busy– they knew they
wouldn't be able to work on their
primary responsibility because the
systems they needed to access just
weren't available.

These challenges were driving up costs, reducing the team's efficiency, and
impacting the reliability and predictability of our performance testing. We
knew we had to take action—and that's why we started looking at service
virtualization. Ultimately, we found that the time and cost of implementing
service virtualization was far less than the time and cost associated
with implementing all the various systems across all those staging
environments—or building up the connectivity between the different
staging environments.

Case Study
Service Virtualization, Performance Testing, and DevOps at Comcast

4

We used to need two weeks to performance test the code once
we got it in our staging environments. We shrunk that to just
two or three days.

MEASURABLE RESULTS FROM SERVICE
VIRTUALIZATION
We turned to service virtualization for two main reasons. First, we wanted
to increase the accuracy of performance test results. Second, we were
constantly working around frequent and lengthy downtimes in the staged
test environments.

Our initial focus was on the biggest pain points in terms of scheduling
conflicts within the performance testing teams, unavailable systems, and
systems where our testing would impact other development or test groups.
Since we started, we've been able to virtualize about 98% of the interfaces
involved in our tests, and we saw a 65% annual reduction in the amount
of time it takes us to create and maintain test data (factoring in the time
we spend creating and updating virtual assets). We also reduced staging
environment downtime by 60%.

Since we can start working on our scripts versus virtual assets in the
development environment, we typically have everything ready to go quite
early in each sprint. We used to need two weeks to performance test the
code once we got it in our staging environments (for example, with average
load tests, peak load tests, endurance tests, and so on). We shrunk that to
just two or three days.

SOLUTION BENEFITS
Our tests are now more predictable, more consistent, and more
representative of what would be seen in production. Moreover, we're also
able to increase the scope of testing in many cases. For example, we can't
put production loads on certain actual services, but when we're working
with virtual services we can ramp it up with production-level loads and
get realistic responses, both in terms of data and performance. We can
really isolate the AUT, not just from a performance testing perspective,
but also from a performance profiling perspective. Instead of just telling
development, "This is the performance of your system," we can also say,
"This is where we're seeing the bottlenecks and this is where we think
changes might improve the throughput of the application."

The key benefit for the performance testing team is the increased uptime
and availability of test environments. Service virtualization has allowed us
to get great utilization from our testing staff, complete more projects on
time, and also save money by lowering the overall total cost of performing
the testing required for a given release.

Case Study
Service Virtualization, Performance Testing, and DevOps at Comcast

5

SERVICE VIRTUALIZATION AND DEVOPS
Beyond performance testing in our staging environments, we've also
been able to use service virtualization for everything from unit testing
and regression testing in the development environment, to baseline
performance testing in early downstream environments, to functional
and regression testing in the QA/integrated environment, to manual/
exploratory testing in an environment that's quite close to production
(but uses virtual assets in some cases).

All the configuration and deployment of virtual assets for the various
environments is automated as part of our DevOps infrastructure.
Environments automatically switch between virtual assets and actual
assets according to the business rules we've defined—for example, based
on what endpoint the traffic is coming from, the data contained in the test
packets, and so on. This service virtualization solution has enabled us to
achieve continuous testing as an integral part of our DevOps process.

Case Study
Service Virtualization, Performance Testing, and DevOps at Comcast

6

TAKE THE NEXT STEP
Find out how to choose the right service virtualization solution for your
organization. Download the whitepaper.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software
with its market-proven, integrated suite of automated software testing
tools. Supporting the embedded, enterprise, and IoT markets, Parasoft’s
technologies reduce the time, effort, and cost of delivering secure, reliable,
and compliant software by integrating everything from deep code analysis
and unit testing to web UI and API testing, plus service virtualization
and complete code coverage, into the delivery pipeline. Bringing all this
together, Parasoft’s award winning reporting and analytics dashboard
delivers a centralized view of quality enabling organizations to deliver
with confidence and succeed in today’s most strategic ecosystems and
development initiatives — cybersecure, safety-critical, agile, DevOps,
and continuous testing.

https://www.parasoft.com/white_paper/how-to-choose-the-right-service-virtualization-solution-for-your-organization/
https://www.parasoft.com

